
Energyscope: A Tool for Energy System Modeling

Dr. Theodoros Damartzis

Doctoral School, 12 November 2020

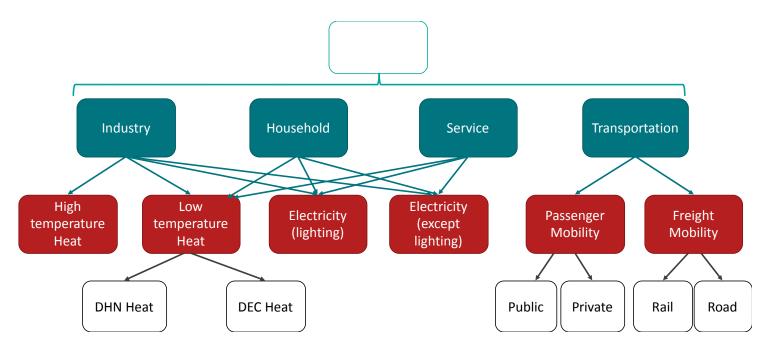
The Swiss Energyscope Model

How to define the availability of the excess electricity?

- 2050 as target year
- Mean days approach (monthly resolution)
- Additional constraints for CH
- Model size:
 - 10646 decision variables
 - Solved in seconds (< 1s)

Gironès, Victor Codina, et al., *Energy* 90 (2015): 173-186. Moret, Stefano, et al., *Applied energy* 202 (2017): 597-617.

Swiss Energyscope - Concept


 For what: Energy strategy design by creating specific energy scenarios and discover its implications for Switzerland.

How:

- MILP (Mixed Integer Linear Programming)
 Optimization
- Programming language: AMPL
 (A Mathematical Programming Language)

• Features:

- Snapshot of future scenarios
- Good performance in the trade-off between modeling contents and convergence speed
- Storage
- Time resolution: monthly/hourly (typical days)
- Space resolution: national/cantonal

[1] Swiss Energyscope: http://energyscope.ch/a-propos/les-enjeux/

Swiss Energyscope - Model

Objective: minimize the total cost of system

$$\min \mathbf{C_{tot}} = \min \left(\sum_{j \in \mathscr{E}} \mathbf{C_{inv}}(j) + \sum_{j \in \mathscr{E}} \mathbf{C_{maint}}(j) + \sum_{r \in \mathscr{R}} \sum_{t \in \mathscr{T}} \mathbf{C_{op}}(r, t) t_{op}(t) \right)$$

where $\mathscr{E}, \, \mathscr{R}$ and \mathscr{T} represent the technology set, the resource set and time period set

the investment cost **C**_{inv} is annualized by:

$$\tau(j) = \frac{i_{rate}(i_{rate} + 1)^{n(j)}}{(i_{rate} + 1)^{n(j)} - 1}$$

Subject to:

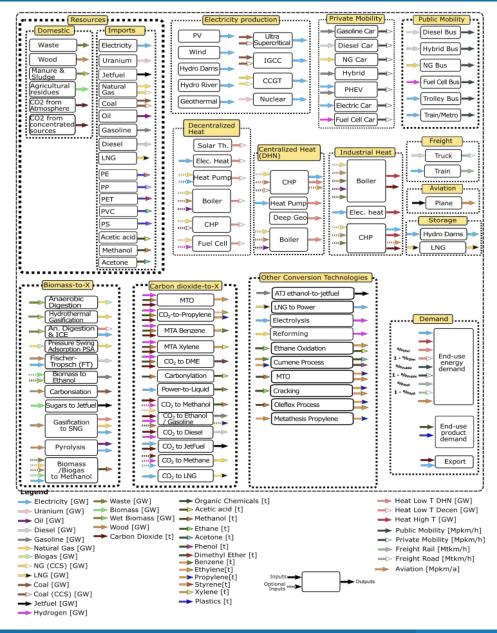
Supply-demand balance Mass/energy balance

Availability of resources

Potential of technologies

Storage continuity

Grid capacity


Peak demand

Modeling equations

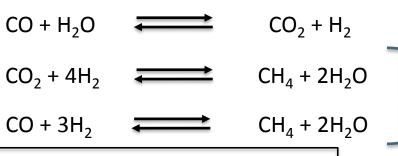
$\mathbf{C_{inv}}(j) = c_{inv}(j)\mathbf{F}(j)$	$\forall j \in TECH $ (1.3)			
$\mathbf{C_{maint}}(j) = c_{maint}(j)\mathbf{F}(j)$	$\forall j \in TECH $ (1.4)			
$\mathbf{GWP_{constr}}(j) = gwp_{constr}(j)\mathbf{F}(j)$	$\forall j \in TECH $ (1.5)			
$f_{min}(j) \le \mathbf{F}(j) \le f_{max}(j)$	$\forall j \in TECH $ (1.6)			
$\mathbf{N}(j)f_{ref}(j) = \mathbf{F}(j)$	$\forall j \in TECH \ (1.7)$			
$\mathbf{F_t}(j,t) \le \mathbf{F}(j)c_{p,t}(j,t)$	$\forall j \in \mathit{TECH}, \forall t \in T \ (1.8)$			
$\sum_{t \in T} \mathbf{F_t}(j,t) t_{op}(t) \leq \mathbf{F}(j) c_p(j) \sum_{t \in T} t_{op}(t)$	$\forall j \in TECH $ (1.9)			
$\mathbf{C_{op}}(i) = \sum_{t \in T} c_{op}(i, t) \mathbf{F_t}(i, t) t_{op}(t)$	$\forall i \in RES \ (1.10)$			
$\mathbf{GWP_{op}}(i) = \sum_{t \in T} gwp_{op}(i, t)\mathbf{F_t}(i, t)t_{op}(t)$	$\forall i \in RES \ (1.11)$			
$\sum_{t \in T} \mathbf{F_t}(i, t) t_{op}(t) \le avail(i)$	$\forall i \in RES \ (1.12)$			
$\sum_{i \in \textit{RES} \cup \textit{TECH} \setminus \textit{STO}} \!$	$t) = 0 \forall l \in L, \forall t \in T (1.13)$			
$\mathbf{F_t}(j,t) = \mathbf{F_t}(j,t-1) + t_{op}(t) \cdot$				
$(\sum_{l \in L \mid \eta_{sm,in}(j,l) > 0} \mathbf{Sto}_{\mathbf{in}}(j,l,t) \eta_{sto,in}(j,l) - \sum_{l \in L \mid \eta_{smo,in}(j,l) > 0} \mathbf{Sto}_{\mathbf{out}}(j,l,t) / \eta_{sto,out}(j,l))$	$\forall j \in STO, \forall t \in T (1.14)$			
$\mathbf{Sto_{in}}(j,l,t)(\lceil \eta_{sto,in}(j,l) \rceil - 1) = 0$	$\forall j \in STO, \forall l \in L, \forall t \in T \ (1.15)$			
$\mathbf{Sto_{out}}(j,l,t)(\lceil \eta_{sto,out}(j,l) \rceil - 1) = 0$	$\forall j \in STO, \forall l \in L, \forall t \in T \ (1.16)$			
$\left[\sum_{l \in L \mid \eta_{sin,in}(j,l) > 0} \mathbf{Sto_{in}}(j,l,t) / m(j,l,t)\right] + \left[\sum_{l \in L \mid \eta_{sin,in}(j,l) > 0} \mathbf{Sto_{out}}(j,l,t) / m(j,l,t)\right]$	$\forall j \in STO, \forall t \in T \ (1.17)$			
$\begin{aligned} & \textbf{Loss}(eut, t) = (\sum_{i \in RES \cup TECH \setminus STO(f(i, eut) > 0} f(i, t)) \%_{loss}(eut) \end{aligned}$	$\forall eut \in EUT, \forall t \in T \ (1.18)$			
$\mathbf{F_t}(j,t) + \mathbf{F_t}(k,t)\mathbf{Y_{Solar}}(j) \ge$				
$\frac{\textbf{EndUses}(\textit{HeatLowTDHN},t) + \textbf{EndUses}(\textit{HeatLowTDec},t)}{\textit{endUsesInput}(\textit{HeatLowTSH}) + \textit{endUsesInput}(\textit{HeatLowTHW})} \sum_{t \in T} \mathbf{F_t}(j,t) t_{op}(t)$				
$k = Dec_{Solar}, \forall j \in TECH \ OF \ EUT(1)$				
$\sum_{j \in TECH} \mathbf{Y_{Solar}}(j) \le 1$	(1.20)			

Doctoral School, EPFL, 12 November 2020

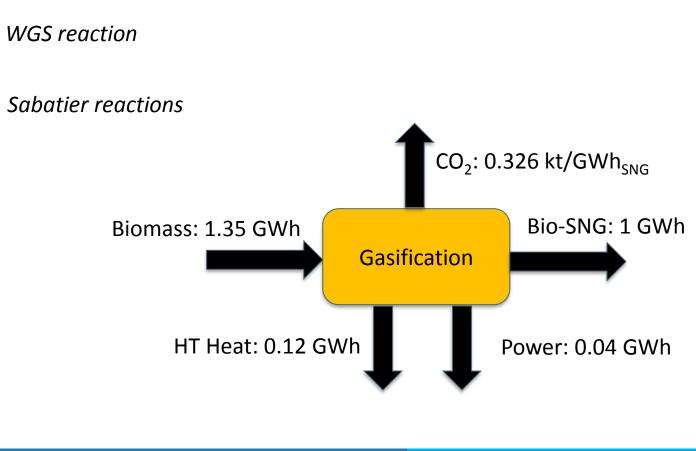
Considered Technologies

Over 120 technologies grouped in:

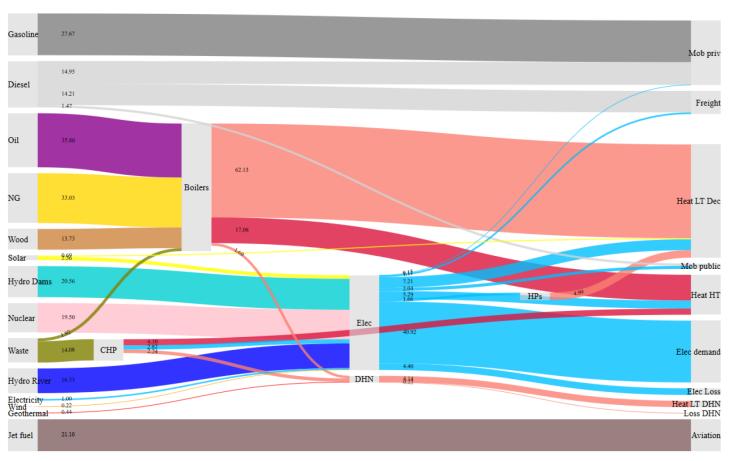
- Power production
- Heat production (e.g. DHN, CHN, Industrial etc.)
- Mobility (e.g. private, public etc.)
- Biomass to X
- CO₂ to X
- Other (e.g. intermediate processes, bio-products, etc.)
- Demand (e.g. heat, power, export etc.)


Technologies appropriately connected to resource, heat, electricity, products, CO₂ and demand layers

Technology Implementation - Gasification

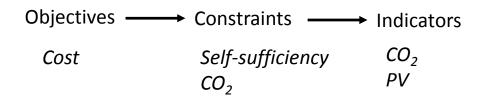

The partial (sub-stoichiometric) oxidation of lignin-rich biomass to mainly produce syngas, a mixture of CO and H₂.

Methane can be synthesized using a subsequent step comprised of :


- a) concentration adjustment by water-gas shift (WGS) and
- b) the Sabatier reactions:

Model input data: 0.74 0.03 0.09 CO₂ flow: kt/GWh_{prod} 0.326 2930 MCHF/GW 149.44 MCHF/GW kt CO2 eq/GWh GWP: TRL: 8 Lifetime: 25 *C p*: 0.86 Ref size: 0.001 GW

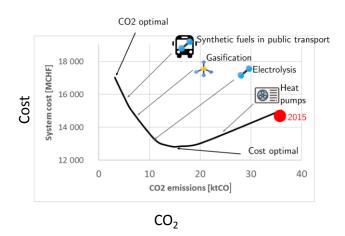
Swiss Energyscope Model - Validation

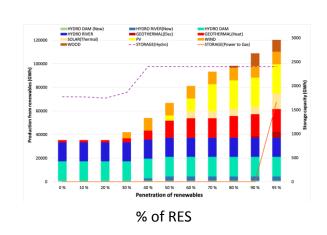

theodoros.damartzis@epfl.ch

Model validation

		Values from Model (TWh/y)	Values from Literature (TWh/y) (BFE, 2018)	% Deviation
Electricity	Nuclear	19.50	19.50	0.00
	CHP	2.82	2.80	0.71
	PV	2.36	2.28	3.51
	Wind	0.22	0.22	0
	Hydro Dam	20.56	20.72	-0.77
	Hydro River	16.33	15.95	2.38
Fuels and heat sources	Gasoline	27.67	27.67	0
	Diesel	30.63	31.82	-3.74
	Jetfuel	21.10	21.10	0.00
	Electricity (Import)	1.00		
	Gas	33.03	33.03	0.00
	Oil	35.80	35.54	0.73
	Wood	13.73	13.73	0.00
	Heat from waste (DHN)	2.24		
	Heat from heat pump	4.99	4.64	7.54
	Solar (thermal)	0.69	0.69	0.00

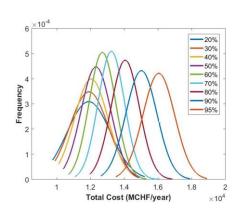
Swiss Energyscope - Use


Scenarios generation

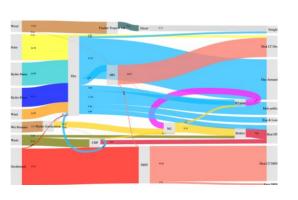

Codina Gironès, Víctor, et al. "On the assessment of the CO₂ mitigation potential of woody biomass." *Frontiers in Energy Research* 5 (2018): 37.

Parametric constraints: RES penetration

Total cost sensitivity



Technology options



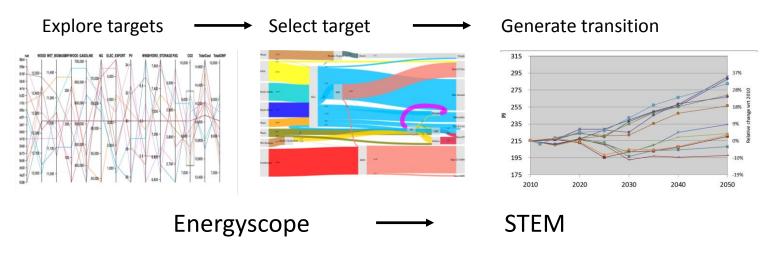
x2 - x1.5 /3 x2 CO₂ -40% vs NEP | Solution | Soluti

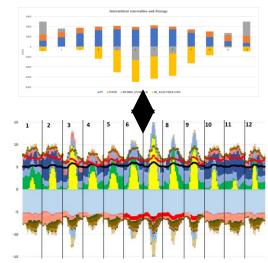
Total Cost probability

Scenario assessment

Flows in GWh/year

Swiss Energyscope: Perspectives


Regionalization

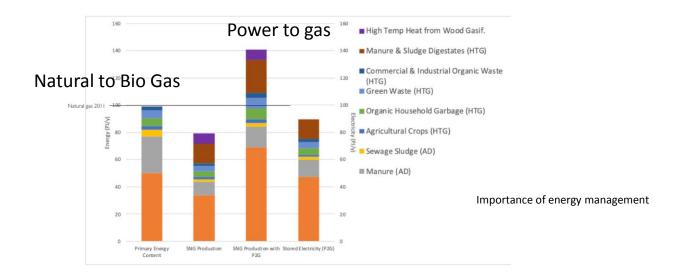

Energyscope/canton
Impact of cantonal/regionalized policy
Resources exchanges
Grid infrastructure

- * LV-MV-HV electrical grids
- * Gas network

Transition

Energy management

New Indicators

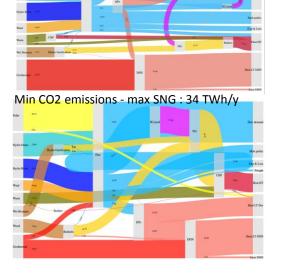

Employment

Air Quality: sherpa

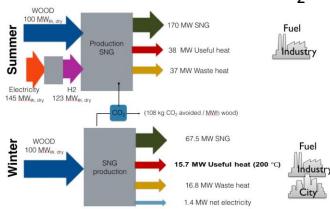
LCA indicators

Energyscope : Applications

Biomass resources and conversion


CO₂ flows & emissions CO₂ sequestration Chemical products

Where is Carbon going?

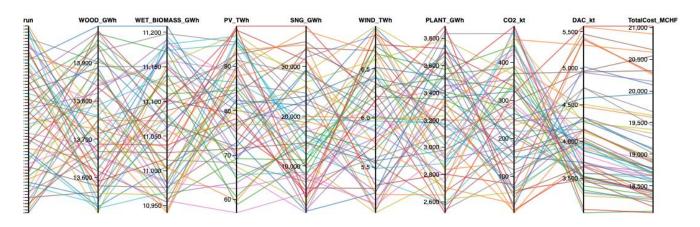


Freight by diesel: SNG = 10 TWh/y

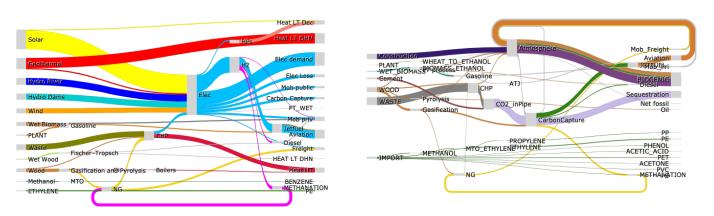
High deep geothermal

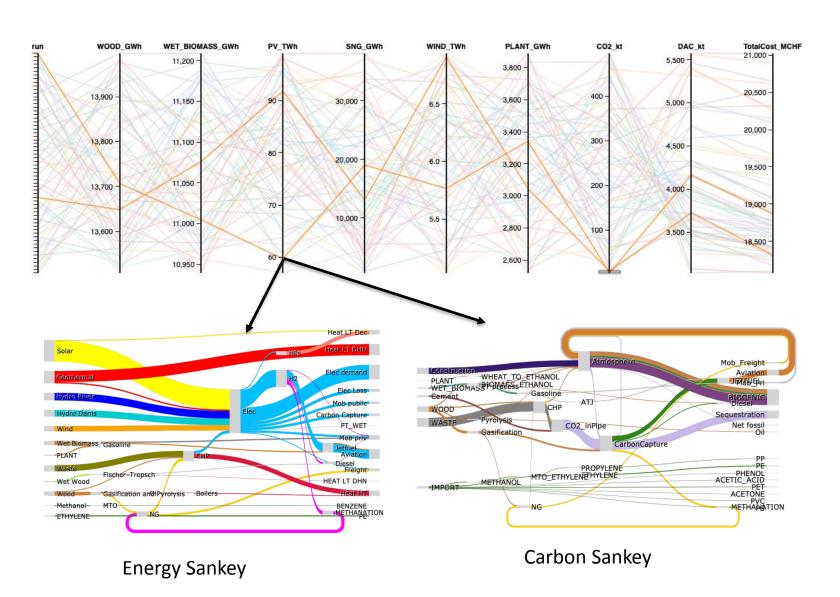
Combined heat and fuel and CO₂ sequestration

Celebi, Ayse Dilan, et al. "Next generation cogeneration system for industry-combined heat and fuel plant using biomass resources." Chemical Engineering Science (2019)


10

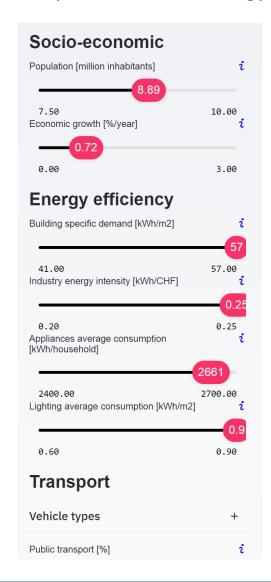
Application


Add Constraints


Generate Multiple Solutions

Evaluate Solutions

Application



Browsing of competing solutions for comparison

Energy and carbon Sankey diagrams show the respective flows across each system

Website

https://calculator.energyscope.ch

Take Home Messages

- Swiss energy system representation using the concept of Energyscope
- Solution(s): connection(s) of resources, technologies and demand by sector using MILP optimization.
- Technology implementation is easy provided meaningful data are retrieved.
- The energyscope platform can be used for completely assessing the energy system including perspectives on sectorial analysis, renewables penetration, regionalization among others.
- Assessment of different solutions to cover the entire solution space.
- Interactive and easy to use online platform (https://calculator.energyscope.ch)